Epigenomic enhancer annotation reveals a key role for NFIX in neural stem cell quiescence.

نویسندگان

  • Ben Martynoga
  • Juan L Mateo
  • Bo Zhou
  • Jimena Andersen
  • Angeliki Achimastou
  • Noelia Urbán
  • Debbie van den Berg
  • Dimitra Georgopoulou
  • Suzana Hadjur
  • Joachim Wittbrodt
  • Laurence Ettwiller
  • Michael Piper
  • Richard M Gronostajski
  • François Guillemot
چکیده

The majority of neural stem cells (NSCs) in the adult brain are quiescent, and this fraction increases with aging. Although signaling pathways that promote NSC quiescence have been identified, the transcriptional mechanisms involved are mostly unknown, largely due to lack of a cell culture model. In this study, we first demonstrate that NSC cultures (NS cells) exposed to BMP4 acquire cellular and transcriptional characteristics of quiescent cells. We then use epigenomic profiling to identify enhancers associated with the quiescent NS cell state. Motif enrichment analysis of these enhancers predicts a major role for the nuclear factor one (NFI) family in the gene regulatory network controlling NS cell quiescence. Interestingly, we found that the family member NFIX is robustly induced when NS cells enter quiescence. Using genome-wide location analysis and overexpression and silencing experiments, we demonstrate that NFIX has a major role in the induction of quiescence in cultured NSCs. Transcript profiling of NS cells overexpressing or silenced for Nfix and the phenotypic analysis of the hippocampus of Nfix mutant mice suggest that NFIX controls the quiescent state by regulating the interactions of NSCs with their microenvironment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epigenomic Landscapes of hESC-Derived Neural Rosettes: Modeling Neural Tube Formation and Diseases.

We currently lack a comprehensive understanding of the mechanisms underlying neural tube formation and their contributions to neural tube defects (NTDs). Developing a model to study such a complex morphogenetic process, especially one that models human-specific aspects, is critical. Three-dimensional, human embryonic stem cell (hESC)-derived neural rosettes (NRs) provide a powerful resource for...

متن کامل

Using Drosophila to study regulation of neural stem cell quiescence by nucleocytoplasmic transport

Cellular quiescence is a reversible non-dividing state. Subsets of adult mammalian stem cells, namely neural stem cells, spend the majority of their time in quiescence. The ability of stem cells to adopt the quiescent state appears to be crucial for long-term maintenance of the stem cell compartment. Tumour cells can also become quiescent and this renders them resistance to most chemotherapeuti...

متن کامل

Nfix is a novel regulator of murine hematopoietic stem and progenitor cell survival.

Hematopoietic stem cells are both necessary and sufficient to sustain the complete blood system of vertebrates. Here we show that Nfix, a member of the nuclear factor I (Nfi) family of transcription factors, is highly expressed by hematopoietic stem and progenitor cells (HSPCs) of murine adult bone marrow. Although short hairpin RNA-mediated knockdown of Nfix expression in Lineage(-)Sca-1(+)c-K...

متن کامل

Comparative Epigenomic Annotation of Regulatory DNA

Despite the explosive growth of genomic data, functional annotation of regulatory sequences remains difficult. Here, we introduce "comparative epigenomics"-interspecies comparison of DNA and histone modifications-as an approach for annotation of the regulatory genome. We measured in human, mouse, and pig pluripotent stem cells the genomic distributions of cytosine methylation, H2A.Z, H3K4me1/2/...

متن کامل

NFIX regulates neural progenitor cell differentiation during hippocampal morphogenesis.

Neural progenitor cells have the ability to give rise to neurons and glia in the embryonic, postnatal and adult brain. During development, the program regulating whether these cells divide and self-renew or exit the cell cycle and differentiate is tightly controlled, and imbalances to the normal trajectory of this process can lead to severe functional consequences. However, our understanding of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genes & development

دوره 27 16  شماره 

صفحات  -

تاریخ انتشار 2013